Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 66-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172364

RESUMO

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1-3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1-3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

2.
J Phys Condens Matter ; 33(29)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984838

RESUMO

By means of spin-resolved density functional theory calculations using both atomic orbitals and plane-wave basis codes, we study the electronic and magnetic ground state of single-layer NbSe2. We find that, for all the functionals considered, the most stable solution in this two-dimensional (2D) superconductor is the ferrimagnetic ground state with a magnetic moment of 1.09 µBat the Nb atoms and of 0.05 µBat the Se atoms pointing in the opposite direction. Our calculations show that the ferrimagnetic state precludes the development of charge density wave (CDW) order and their coexistence in the single-layer limit, unless graphene is considered as a substrate. The spin-resolved calculated density of states (DOS), a key fingerprint of the electronic and magnetic structure of a material, unambiguously reproduces the experimental DOS measured by scanning tunneling spectroscopy in single-layer NbSe2. Our work sets magnetism into play in this prototypical correlated 2D material, which is crucial to understand the formation mechanisms of 2D superconductivity and CDW order.

3.
J Phys Condens Matter ; 33(29)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636715

RESUMO

The presence of sharp peaks in the real part of the static dielectric response function are usually accepted as indication of charge or spin instabilities in a material. However, there are misconceptions that Fermi surface (FS) nesting guarantees a peak in the response function like in one-dimensional systems, and, in addition, response function matrix elements between empty and occupied states are usually considered of secondary importance and typically set to unity like in the free electron gas case. In this work, we explicitly show, through model systems and real materials, within the framework of density functional theory, that predictions about the peaks in the response function, using FS nesting and constant matrix elements yields erroneous conclusions. We find that the inclusion of the matrix elements completely alters the structure of the response function. In all the cases studied other than the one-dimensional case we find that the inclusion of matrix elements washes out the structure found with constant matrix elements. Our conclusion is that it is imperative to calculate the full response function, with matrix elements, when making predictions about instabilities in novel materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...